Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Analysis of E-85 Fuel for Formic, Acetic, Propionic, Butyric, Glycolic and Citric Acids using Reversed Phase High Performance Liquid Chromatography

2008-10-06
2008-01-2509
An HPLC (High Performance Liquid Chromatography) method to measure the concentration of six organic acids in E-85 fuel has been developed. A three point calibration curve is established using standard solutions of the following organic acids: formic acid, acetic acid, propionic acid, butyric acid, glycolic acid and citric acid. An internal standard (maleic acid) is used to monitor HPLC system suitability and peak retention time stability. The method utilizes UV detection at 210 nm to detect and quantify the levels of each acid in E-85 fuel. Test results from nine commercially available E-85 fuel samples are reported. Analytical method validation was achieved by performing and confirming system suitability or injection repeatability (percent relative standard deviation ≤ 3%), calibration curve linearity (R2 ≥ 0.999), analysis repeatability (standard deviation < 1 mg/L) and recovery (percent recovery 91 - 102%).
Journal Article

An Improved Reanalysis Method Using Parametric Reduced Order Modeling for Linear Dynamic Systems

2016-04-05
2016-01-1318
Finite element analysis is a standard tool for deterministic or probabilistic design optimization of dynamic systems. The optimization process requires repeated eigenvalue analyses which can be computationally expensive. Several reanalysis techniques have been proposed to reduce the computational cost including Parametric Reduced Order Modeling (PROM), Combined Approximations (CA), and the Modified Combined Approximations (MCA) method. Although the cost of reanalysis is substantially reduced, it can still be high for models with a large number of degrees of freedom and a large number of design variables. Reanalysis methods use a basis composed of eigenvectors from both the baseline and the modified designs which are in general linearly dependent. To eliminate the linear dependency and improve accuracy, Gram Schmidt orthonormalization is employed which is costly itself.
Journal Article

Prediction of Automotive Side Swing Door Closing Effort

2009-04-20
2009-01-0084
The door closing effort is a quality issue concerning both automobile designers and customers. This paper describes an Excel based mathematical model for predicting the side door closing effort in terms of the required minimum energy or velocity, to close the door from a small open position when the check-link ceases to function. A simplified but comprehensive model is developed which includes the cabin pressure (air bind), seal compression, door weight, latch effort, and hinge friction effects. The flexibility of the door and car body is ignored. Because the model simplification introduces errors, we calibrate it using measured data. Calibration is also necessary because some input parameters are difficult to obtain directly. In this work, we provide the option to calibrate the hinge model, the latch model, the seal compression model, and the air bind model. The door weight effect is geometrically exact, and does not need calibration.
Technical Paper

Fault Diagnosis and Prediction in Automotive Systems with Real-Time Data Using Machine Learning

2022-03-29
2022-01-0217
In the automotive industry, a Malfunction Indicator Light (MIL) is commonly employed to signify a failure or error in a vehicle system. To identify the root cause that has triggered a particular fault, a technician or engineer will typically run diagnostic tests and analyses. This type of analysis can take a significant amount of time and resources at the cost of customer satisfaction and perceived quality. Predicting an impending error allows for preventative measures or actions which might mitigate the effects of the error. Modern vehicles generate data in the form of sensor readings accessible through the vehicle’s Controller Area Network (CAN). Such data is generally too extensive to aid in analysis and decision making unless machine learning-based methods are used. This paper proposes a method utilizing a recurrent neural network (RNN) to predict an impending fault before it occurs through the use of CAN data.
Technical Paper

Study of Incremental Bending Test on Aluminum Sheets

2018-04-03
2018-01-0807
Bendability is one of the most important formability characteristics in sheet metal forming, so it has to be understood for robust aluminum stamping process designs. Crack is one of the major failure modes in aluminum sheet bending. In this study, a new “incremental bending” method is proposed to reduce the risk of bending failure. A novel laboratory test methodology is conducted to test the 5xxx series aluminum sheet bendability with 3D digital image correlation (DIC) measurement system. The designs of test apparatus and test procedure are introduced in this paper. Through the data processing and evaluation of a sequence image acquisition, the major strain histories within the zone of the through thickness crack of test samples are measured. Testing results show that incremental bending is capable of reducing peak strain on the outer surface obviously compared with traditional non-incremental bending. The more step, more movement, the more peak strain reduction.
Technical Paper

High Dimensional Preference Learning: Topological Data Analysis Informed Sampling for Engineering Decision Making

2024-04-09
2024-01-2422
Engineering design-decisions often involve many attributes which can differ in the levels of their importance to the decision maker (DM), while also exhibiting complex statistical relationships. Learning a decision-making policy which accurately represents the DM’s actions has long been the goal of decision analysts. To circumvent elicitation and modeling issues, this process is often oversimplified in how many factors are considered and how complicated the relationships considered between them are. Without these simplifications, the classical lottery-based preference elicitation is overly expensive, and the responses degrade rapidly in quality as the number of attributes increase. In this paper, we investigate the ability of deep preference machine learning to model high-dimensional decision-making policies utilizing rankings elicited from decision makers.
Technical Paper

Design and Simulation of Battery Enclosure for an Electric Vehicle Application

2024-04-09
2024-01-2738
Making a sturdy battery box or enclosure is one of the many challenging issues that the expansion of electrification entails. Many characteristics of an effective battery housing contribute to the safety of passengers and shield the battery from the harsh environment created by vibrations and shocks due to varying road profiles in the vehicle. This results in stress and deformations of different degrees. There is a need to understand and develop a correlation between structural performance and lightweight design of battery enclosure as this can increase the range of the drive and the life cycle of a battery pack. This paper investigates the following points: I) A conceptualized CAD model of battery enclosure is developed to understand the design parameters such as utilization of different material for strength and structural changes for performance against vibration and strength.
Technical Paper

Optimal Control Co-Design of a Parallel Electric-Hydraulic Hybrid Vehicle

2024-04-09
2024-01-2154
This paper presents an optimal control co-design framework of a parallel electric-hydraulic hybrid powertrain specifically tailored for heavy-duty vehicles. A pure electric powertrain, comprising a rechargeable lithium-ion battery, a highly efficient electric motor, and a single or double-speed gearbox, has garnered significant attention in the automotive sector due to the increasing demand for clean and efficient mobility. However, the state-of-the-art has demonstrated limited capabilities and has struggled to meet the design requirements of heavy-duty vehicles with high power demands, such as a class 8 semi-trailer truck. This is especially evident in terms of a driving range on one battery charge, battery charging time, and load-carrying capacity. These challenges primarily stem from the low power density of lithium-ion batteries and the low energy conversion efficiency of electric motors at low speeds.
Technical Paper

Algorithm to Calibrate Catalytic Converter Simulation Light-Off Curve

2024-04-09
2024-01-2630
Spark ignition engines utilize catalytic converters to reform harmful exhaust gas emissions such as carbon monoxide, unburned hydrocarbons, and oxides of nitrogen into less harmful products. Aftertreatment devices require the use of expensive catalytic metals such as platinum, palladium, and rhodium. Meanwhile, tightening automotive emissions regulations globally necessitate the development of high-performance exhaust gas catalysts. So, automotive manufactures must balance maximizing catalyst performance while minimizing production costs. There are thousands of different recipes for catalytic converters, with each having a different effect on the various catalytic chemical reactions which impact the resultant tailpipe gas composition. In the development of catalytic converters, simulation models are often used to reduce the need for physical parts and testing, thus saving significant time and money.
X